
Understanding Procedural Content Generation:
A Design-Centric Analysis of the Role of PCG in Games

Gillian Smith
Northeastern University

Playable Innovative Technologies Group
Boston, Massachusetts, USA

gillian@ccs.neu.edu

ABSTRACT
Games that use procedural content generation (PCG) do so
in a wide variety of ways and for different reasons. One of
the most common reasons cited by PCG system creators
and game designers is improving replayability—by
providing a means for automatically creating near-infinite
amounts of content, the player can come back and replay
the game and refine her strategies over a long period.
However, this notion of replayability is both overly broad
and incomplete as a motivation. This paper contributes an
analytical framework and associated common vocabulary
for understanding the role of PCG in games from a design
standpoint, with an aim of unpacking some of the broad
justifications for PCG use in games, and bringing together
technical concerns in designing PCG systems with design
concerns related to creating engaging playable experiences.

Author Keywords
Procedural content generation; game AI; MDA framework;
game design; game design theory.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation:
Miscellaneous; I.2.1 Artificial Intelligence: Applications
and Expert Systems—Games

INTRODUCTION
Procedural content generation (PCG) is a growing area of
research and practice in game design. Researchers in
artificial intelligence are creating more efficient and more
expressive methods for having a computer create levels,
weapons, terrain, and even game rules [17,56].
Simultaneously, game designers from both industry and
research backgrounds are increasingly turning to the
computer to create massive, varied worlds for players to
explore, at a fraction of the cost of human authorship [10].
Furthermore, recent work at the intersection of HCI and AI

has been examining using PCG to create intelligent user
interfaces for game designers, while lacking a design
vocabulary for how PCG can be used [25,47,52].

In order for further advancements in PCG research to be
made, it is vital that both AI researchers and designers have
a common vocabulary for understanding not just what PCG
is but how it can be used to induce particular experiences
and what it uniquely offers to game design. Thus, what is
needed is a framework for understanding and
communicating about how PCG is taking a role in game
design. This framework needs to address both the ways in
which the PCG system works to create content, which is of
primary concern to the PCG researcher, and the experience
the player (or user, in the case of AI-based tools) has that is
shaped by that system, which is of primary concern to a
game designer [19,42]. The framework presented in this
paper was created by analyzing several PCG games and
research projects through the lens of the Mechanics,
Dynamics, and Aesthetics (MDA) framework [19].

PCG is used in a variety of ways in games, with the
common justifications of replayability (as described in [56])
and tailoring content for an individual player. The promise
of personalized content generation is especially compelling
for educational and training games (e.g. [48]). This paper
argues that “replayability”, in particular, is a nuanced
concept that requires unpacking through an examination of
the designs of both the PCG system and the game that the
system is embedded within. This overly-broad justification
is examined more deeply through a design-centric analysis
of how PCG has been used in games thus far. While the
framework introduced in this paper focuses largely on
PCG’s implementation in game design, it is also important
to note that the representation and mechanics portions of
the framework can also be used to describe the role that
PCG can play in game design tools, offering more detail
than previous work in PCG design metaphors [23].

This paper has two main contributions. First, a conceptual
framework for analyzing the role of PCG in game design
(both for games and for game design tools), and second, a
resulting vocabulary for both practitioners and
researchers—from both artificial intelligence and game
design—to discuss the affordances of PCG. The framework
is illustrated using examples from several games, design

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.

CHI 2014, April 26 - May 01 2014, Toronto, ON, Canada
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2473-1/14/04…$15.00.
http://dx.doi.org/10.1145/2556288.2557341

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

917

tools, and research projects, and a longer worked example
is also provided. However, this is not intended to be a full
survey of PCG, and only illustrative examples are used.
Finally, the paper closes with a discussion of future work
and a reflection on the unique experiences that can come
from incorporating PCG in a game’s design.

BACKGROUND
This section begins with an overview of technical
approaches to procedural content generation and their
design-relevant tradeoffs, then discusses the background in
the two main contribution areas.

Approaches to Procedural Content Generation
There are many different approaches taken in procedural
content generation, each with different affordances and
tradeoffs for design. All approaches can be used in both a
game and design tool setting. The five main categories that
a content generator can fall into are: generation as
optimization, generation as constraint satisfaction,
generation with grammars, generation as content
selection, and generation as a constructive process.

Optimization
Optimization approaches to content generation treat the
design process as a search for the combination of elements
that best fit some criteria, which can be either specified
mathematically by the system creator, or judged and
curated by a human. Optimization-based generators
explicitly and externally model the desired qualities of
generated content. A great deal of research in PCG uses
evolutionary algorithms (this is sometimes referred to as
“search-based PCG” [56]), which is an optimization
approach. Optimization approaches to PCG are often
(though not always) computationally expensive, making it
difficult to use them in games that require a highly
responsive PCG system. They are often used with a
human-in-the-loop for the evaluation function [16,38,43]
and to create personalized content [45] offline.

Constraint Satisfaction
This approach involves the declarative specification of
properties of and constraints on the content that will be
created. For example, levels in the math education game
Refraction are generated by searching for solutions for a set
of design constraints [48]. Declarative representations have
the strength that a designer can specify knowledge about
how the content should appear without needing to specify
how the underlying search algorithm should perform. The
challenge with constraint-based approaches comes largely
in determining an appropriate representation for facts about
the generated content, and with debugging a set of complex,
interrelated constraints. This approach has been used
extensively in tools for designers [4,46,52].

Grammars
These systems involve the specification of a grammar that
the algorithm should expand upon to create content. These
are not simply representational grammars used by an

optimization-based generator (e.g. [44]). Grammars can be
used purely as production rules to drive generation, without
any regard for an external measure of the quality of the
level. In such cases, level quality is implicitly baked into
the grammar based on how the production rules are
authored. Grammar-based methods attempt to strike a
balance between designer-specified rules for how content
components should fit together and computer exploration of
the design space through expanding the grammar.
Grammars have been used in offline content generation for
games [8,51] and in tools for designers [30].

Content Selection
There is some contention about whether or not selecting
content from a library to piece it together is complex
enough to qualify as content generation [54,55]. This paper
takes the position that content selection, however simple, is
a form of PCG when it is used to procedurally create an
environment for the player to explore or content for the
player to experience within the context of different
mechanics. Content selection is a very simple form of PCG
that is susceptible to players recognizing large-scale
patterns; however, it is also one of the fastest methods for
generating content and is typically used in games where the
generator must run during play time, such as “endless
runner” games [1,41].

Constructive
A constructive generator is one that builds content in an ad-
hoc manner by piecing together customized building blocks
(see next section). It typically has all of its design
knowledge baked into the algorithm; while it may perform
some amount of search internally, it does not test the results
of the level against some external heuristic to help guide the
search process. Constructive generators are often quite
game-specific. Examples of constructive generators are
those used in Rogue-like games [39]. Constructive
generators can be seen as content selection-based
generators that use smaller pieces of content.

What is Procedural Content Generation?
There are two main survey and taxonomy papers for PCG
in games. The first, from Togelius et al., focuses on the
technical approaches to creating optimization-based
generators, written from the perspective of PCG researchers
for readers with a background in AI [56]. The search-based
PCG taxonomy does identify two design-relevant
characteristics of PCG systems, however: 1) necessity, and
2) whether the generator runs offline or online. The first of
these characteristics is not discussed in this paper, as the
“necessity” of generated content for the player to complete
the game is not relevant to how the player experiences the
content. The second property also appears in our framework
as a property of the game’s mechanics, in terms of how the
user or player has control over the generator. This
taxonomy also mentions a scale of directness-of-
representation, as we do, but only in the context of
evolutionary approaches to content generation. The second

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

918

survey focuses on the granularity of the content being
created—from textures and small “game bits” to NPC
behaviors and entire rulesets—and the maturity of the AI
techniques used to create them [17]. It does not address
issues of player experience or how the player interacts with
the content generator within the game.

Togelius et al. have also written on what exactly constitutes
PCG, and where the line can be drawn between
randomness, player-generated content, and procedurally-
generated content [55]. They concluded that PCG is defined
as “the algorithmic creation of game content with limited or
indirect user input”. This paper takes a somewhat broader
view of content generation, classifying games that do not
provide any user input over the generator as still containing
PCG, and also contributes a more nuanced set of attributes
for how to describe the role of PCG in games.

Finally, Khaled et al. have written on creating “design
metaphors” for PCG systems, to make PCG research from
the AI community more accessible to those in HCI and
design communities [23]. Their metaphors—which include
considering the system as a tool, material, designer, and
domain expert—all are broad categories for how a PCG
system can be seen by a designer. This paper has similar
goals in its aim to identify design-relevant properties of
PCG systems and better understand the role that PCG can
play in a game’s design, but takes a more detailed look at
the way the systems are used.

Frameworks for Game Design
Doug Church, in his call for more work in creating “formal
abstract design tools”, stated that “the primary inhibitor of
design evolution is the lack of a common design
vocabulary” [5]. Since this call for a genre-agnostic design
language, there have been several attempts at creating
languages and frameworks for understanding a game’s
design, the framework in this paper being among them.

One thread of design vocabulary research is in game design
patterns (e.g. [2,18,28]). The framework contributed in this
paper can also be considered as a set of “design patterns”
for the role of PCG in games. Bjork and Holopainen’s work
is among the most comprehensive of these efforts, and
includes a pattern for “Procedurally Generated Game
Worlds” [3], but does not offer detail into the role that these
worlds play in the player’s experience, or different ways
that they might be implemented in the game’s rules.

Other efforts for building a design vocabulary include
building languages to describe specific aspects of game
design, such as Dan Cook’s work on skill atoms [6] or Joris
Dormans’s “machinations” framework for abstractly
representing and prototyping game mechanics [9]. These
two frameworks sit at opposite ends of a spectrum of
formality. Cook’s framework, which focuses on designing
for player learning and progression, is not at all formally
defined. Dormans’s framework, on the other hand, is a
highly formalized, computational model for expressing

game mechanics and subsystems. The framework presented
in this paper aims to sit closer to the middle of this
spectrum: it is not formal or detailed enough to be used to
immediately synthesize a new game, but offers a strong
enough vocabulary and set of examples that it can be easily
used by designers to describe and guide the design of their
own games.

Hunicke et al.’s MDA framework is another example of a
language for describing and designing games [19], and
forms the foundation of the analysis presented in this paper.
In this framework, the design of a game is split into three
main components: 1) the mechanics, or rules and systems in
terms of algorithms and representation; 2) the dynamics,
which are interactions between mechanics and the player’s
input; and 3) the aesthetics, or the “desirable emotional
responses” that are experienced by the player. The
framework is useful for the analysis performed in this paper
because of its dual focus on design and experience. In order
to understand the role that PCG takes in different games, it
is crucial to understand it from both the system designer’s
perspective and the player’s perspective.

UNDERSTANDING PCG IN GAMES
This section describes each aspect of the framework for
understanding the role of PCG in games, categorizing each
property by whether or not it is related to the game’s
mechanics, dynamics, or aesthetics. Each category in the
framework is illustrated with an example from either a
game or research project. It is important to note that aspects
and properties in the framework are not intended to be
mutually exclusive from each other—for example, a game
might provide multiple kinds of control over its PCG
system in different contexts.

Mechanics
There are four main mechanical aspects of the PCG system
that are considered in this framework, summarized in Table
1. These aspects were chosen as a combination of concerns
of the AI programmer (how the generator works) and
concerns of the game designer (how the generator is used).
Each of these mechanical aspects can be used to describe
the role that a PCG system plays in a game design tool, as
well as in games themselves.

Building Blocks
How design knowledge is represented to the generator is a
crucial aspect of procedural content generation, impacting
the range of content that can be produced. This framework
contains four different categories for the building blocks
used by generators: experiential chunks, templates,
components, and subcomponents. These categories are
actually discrete points on what is close to a continuous
spectrum, from highest to lowest authorial burden.

Experiential Chunks. Experiential chunks are large
building blocks for content that are designed by a human
and are sufficiently large that, standing on their own, they
can be experienced by the player. An example of these

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

919

chunks include the rhythm groups that are stitched together
by the Polymorph level generator [21]1.

Templates. Templates are a generalized form of
experiential chunk; a human has still authored a great deal
of the content, enough to dictate the kind of experience that
will be had by a player, but has left some “blanks” (which
may be further constrained) for the computer to fill in.
Examples of these include the quest templates used in the
Scriptease authoring tool [7].

Component Patterns. Component patterns are patterns that
are large enough to be identifiable as human-designed in
the game, but small enough that, on their own, they do not
greatly dictate the experience a human will have. For
example, patrolling enemies in platformer levels (e.g.
Goombas in the Infinite Mario Bros. generator [34]) have a
general behavior dictated by the human designer, but that
behavior is meaningless to the player unless it is placed in
context alongside other level components.

Subcomponents. Generators that operate at the
subcomponent level are using the same building blocks as a
human designer would if she were designing the content
herself. Subcomponents exist at the layer of how the game
is represented internally, such as individual tiles within a
tile grid. Galactic Arms Race [16] operates at this layer,
with it constructing weapon behavior to guide individual
particles along a path.

Stage of Game
Togelius et al. make the distinction between generation that
happens offline vs. online [56]; that distinction is continued
here. Note that it is possible for a game to incorporate both
kinds of content generation, if the game begins with some
generated content, but that content might be procedurally
altered or added to during play (e.g. Galactic Arms Race
weapon generation).

1 These chunks are, themselves, generated and ranked
offline by the Launchpad level generator [51]; however,
who owns authorship for those chunks is irrelevant to the
Polymorph game and its generator, thus it is classified as a
generator that uses experiential chunks.	

Offline. Offline content generation happens before a unit of
play experience begins. Thus, the generator used in
Civilization IV [13] is classified as an offline generator, as
the entire map is created before the main game activity
begins. It is important to note that level generation in Rogue
[57] is also considered to be offline—even though new
maps are generated when the player progresses to the next
level, the entire dungeon is created before the player begins
exploring it and does not base generation on prior player
behavior.

Online. Online content generation happens during the play
experience, optionally in response to how the player is
acting. Examples of online content generation include
Canabalt’s placement of level chunks in front of the player
just off-screen, or Endless Web’s [50] generation of new
level geometry whenever the player alters a parameter to
the underlying generator.

Player Interaction with Generator
In most games, the player interacts exclusively with the
generated content, just as if it were created by a human
designer. However, there are some games that offer the
player the ability to interact with the generator itself:
directly or indirectly requesting new content. Thus, it is
useful to understand the different ways that a player can
exert control over the generator.

None. With no control, the player interacts solely with the
generated content and has no influence whatsoever over the
kind of content that will be created by the generator.
Examples of games that give the player no control over the
generator include Rogue-like games [39], “endless runner”
games, and Minecraft [35].

Parameterized. Parameterized control is a form of indirect
control, where the player can provide the value for some set
of parameters that influence the content the generator
creates. For example, the player is able to manipulate
parameters for the Civilization IV level generator [13] at the
beginning of the game, to request the generator create a
particular kind of map (e.g. one with no oceans, or a single
large continent surrounded entirely by ocean).

Building Blocks Game Stage Interaction Type Player Experience

Experiential Chunk
Large, human-authored

Offline
Before game

None
No human influence

Indirect
No direct experiential control

Template
Computer fills in blanks

Online
During game

Parameterized
Indirect, human sets values

Compositional
Human influences available components

Component Pattern
Small, human-authored

 Preference
Human selects good products

Experiential
Human influences player experience

Subcomponent
Internal representation

 Direct Manipulation
Human manipulates product

Table 1. Summary of the mechanical aspects of PCG. Each aspect has several potential values it can take on.

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

920

Preference. Preference control is another form of indirect
control, where the system is set so that the player can state
(intentionally or implicitly) preferences about the content
they are seeing. This form of control typically comes in the
form of the player evaluating content that has already been
generated to give feedback to the generator and help guide
its future decisions. For example, Galactic Arms Race [16]
uses player preferences, inferred from player behavior, to
guide the next generation of evolved weapons.

Direct Manipulation. Direct manipulation involves the
player actively altering the generated content to provide
additional constraints to the generator. This form of
manipulation is more commonly seen in PCG-enabled
design tools [46,52], rather than games themselves. The
Spore Creature Creator [26], a design tool offered as part
of the game Spore [27], offers this kind of interaction.

Awareness of Player Experience
Some generators are designed simply to piece together
content haphazardly and let player experience emerge from
the results, while others are designed for crafting particular
kinds of player experiences. In the case of generators that
can be controlled by the player, it is also worth discussing
whether or not the player’s control extends to all aspects of
how the generator designs for player experiences. There are
three different ways a generator constructs content to
produce an experience.

Indirect. All content generators, by their very definition,
impact player experience somehow—it is simply a matter
of understanding how intentional the impact is. Generators
that exhibit indirect control over desired player experience
are ones that do not have any intent baked into their design.
For example, the gun generation system in Borderlands
[14] is simply a matter of combinatorics—new guns are
made by compositing different hand-authored gun
properties. There is no desire to create specific kinds of
guns for specific kinds of players, or even to limit the
combinations that can be made based on game constraints.

Compositional. Compositional control involves
influencing the appearance of particular components in the
content being created, but not directly having experiential
control over what is made. For example, Endless Web [50]
requires players to manipulate parameters that control the
frequency of different level components appearing in the
generated geometry, but does not offer control in the form
of demanding a particular difficulty or pattern for pacing.
While the configuration of components does lead to a
particular kind of experience, compositional control does
not let a player explicitly control for experience, it must be
left to emerge from the composition.

Experiential. Experiential control means that the generator
can directly control for the kind of experience the player
will receive from the content generator, and that
(optionally) the player can interact with the generator at the
experiential level. Yannakakis and Togelius attempt to

directly model and capture player experience in their work
on experience-driven procedural content generation [58]. A
non-optimization based approach to experiential control
comes in the game Warning Forever [33], in which the
player’s actions when attacking the boss directly influences
how the boss evolves over time.

Dynamics
The results of these kinds of mechanics are several
dynamics—ways in which the rules interact with each other
and the player during play (see Table 2). When considering
how PCG enables these dynamics, it is helpful to compare a
game with PCG to a game with similar mechanics that does
not have PCG. By doing so, it is possible to see what the
unique dynamics are that are brought out by the
incorporation of the PCG system, and how the mechanics
related to the generator contribute to these dynamics.

PCG Relationship to Other Mechanics
First, in order to understand how the PCG system is situated
within the game and the dynamics that emerge from it, it is
helpful to think about how the player will be interacting
with the generated content and the extent to which the
generated content will influence the player’s overall game
experience.

Core. These games use the procedurally generated content
as a core part of the player’s experience. For example,
Infinite Mario Bros. relies entirely on the generated content
for the player to be able to experience the game;
platformers are heavily reliant on level design to dictate the
aesthetic experiences that are core to the game.

Partial framing. These are games that use procedurally
generated content to frame some aspect of the player’s
experience, but it does not make up the entirety of that
experience. For example, Civilization [13] is a game where
map generation heavily influences early stage exploration
and decisions about where to build cities, but there are so
many other mechanics in the game that the player can build
strategies around that, by the later stages of the game, the
fact that the map was procedurally generated is far less
important.

Decorative. There are many games that use PCG to create
content that is intended to be purely decorative; this is
especially common in computer graphics, where a concern
is how to generate reasonable textures, vegetation, and
decorative façades for city buildings [11,20,30]. While this
distinction between “decorative” and the other two
categories might be seen as similar to Togelius et al.’s
declaration that some content is “unnecessary”, that is not
the intent with this category. All content in a game makes
up a part of the player’s experience, even if it is not directly
interacted with, and thus there is no “unnecessary” content
from a dynamics point of view.

Memorization vs. Reaction
Games that are heavily dependent upon PCG for their core
play, and that use either online or offline generation of

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

921

content with no direct control from the player are games
that are about reacting to unforeseen circumstances.
Sometimes this reaction must come very quickly, in the
case of endless runner games like Robot Unicorn Attack [1].
Other times, the reaction may be related to exploring an
unfamiliar space, as in the platformer Spelunky [59].

In contrast, games such as these that do not have PCG and
instead simply have static, pre-authored content tend to lead
to dynamics of the player memorizing paths through a level
(e.g. Sonic the Hedgehog [53]) or where items are hidden
(e.g. Donkey Kong Country 2 [36]), with the player’s goal
on replay being to beat her best score or test her memory.

It is important to note that the dynamic of reaction emerges
simply from the use of randomness; it is possible for
generators that perform content selection from a library of
experiential chunks or templates to produce these
experiences; there is no need for sophisticated generators
that incorporate experiential design. Indeed, the dynamic of
reaction vs. memorization arises in games without any PCG
at all, but that include a random element, such as match-
three games. Such games would be drastically different
were the gem ordering to be deterministic; players would be
able to memorize sequences of moves and practice moves
that lead to optimal play.

Further, it is plausible that a similar experience about
reacting to unforeseen circumstances could be crafted
through crowdsourcing level designs from a large pool of
users, such that each time the game is played, the player
sees content from a different user. Without any input or
control from the player, the role of the computer is to be an
on-demand, highly productive replacement for a human
designer.

Building Generator Strategies
Online, controllable content generators can lead to a
dynamic in which the player builds strategies around the
generator. This leads to a cycle in which the player informs
the generator what should be created next, and the content
presented in response informs the next decision that the
player will make. Examples include Warning Forever [33]
and Endless Web [50], which is described later in the paper.

There is no clear analog to this dynamic when considering
games with static, human-authored content. Building a
strategy around the generator is, clearly, only possible with
an actual content generator that can respond believably to
human input. In fact, generators that have only indirect
control over player experience are not as suitable for
producing this dynamic, as the player needs to have a
mapping between action and generator reaction in order to
learn how the system works and build a strategy.

Searching a Vast World
This dynamic arises from a generator’s ability to create
vast, varied spaces that could never be reasonably made by
a single author. Generators that produce this dynamic are
those that work either offline or online, at the level of
components or subcomponents (experiential chunks and
templates have patterns that can be quite easy for players to
detect), create either core or framing content, and do not
necessarily require any player control over the generator but
can design for experience either directly or through
components. There are several examples of games that use
this dynamic, including Minecraft [35], the academic
project Charbitat [32], and Inside a Star-Filled Sky [40].

The key here is that the generator produces content that is
somehow surprising to the player as they explore the space.
For example, the Borderlands [14] weapon generator
produces a vast array of guns that the player can be
surprised by, but the player might be searching for a
particular kind of gun as they hunt through the space.

In order to produce this dynamic in games without content
generation, it would require a large authorial burden on a
team of human designers. However, there are games that
show that this level of authoring is plausible; for example
Animal Crossing: New Leaf [31] is a game that has a huge
cast of characters, each of whom have item preferences,
unique home layouts, one of several kinds of personality,
and unique verbal cues. It has a large catalog of items for
the player to purchase and search for over the course of
play. While the physical space of the game is a small town,
there is still a massive amount of designed content in the
game that produces a similar dynamic of searching and
discovering a vast, designed space.

Other Mechanics Memorization vs. Reaction Strategizing Searching Practicing Interacting

Core
Reliant on PCG

Memorization
Testing player memory

Player builds
strategies for
influencing the
content
generator

Player seeks
out new
content in a
vast world

Player practices
game
mechanics in
new settings

Communities
of players
discuss
differences in
game
experiences

Partial Framing
Partial player
experience

Reaction
Reacting to unforeseen
circumstances

Decorative
Not core to game
experience

Table 2. Summary of the dynamics aspects of PCG. There are six dynamic aspects, two of which can take on different values,
while the others are properties that games using PCG might have.

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

922

Practicing in Different Environments
There are also games that use content generation to frame
choices made by the player, where content is generated
offline with or without control from the player. The
dynamic that emerges from this form of generation is an
ability for the player to practice game strategies in a variety
of different environments. Civilization IV [13] is an
example of a game that allows the player to exert
parameterized control over the generator, in order to help
guide the environment they will be playing and practicing
in. Diablo 3 [37] does not give the player control over the
generator, but still allows the player to practice different
combat strategies or character classes in different worlds.

In comparison, games that have only a single environment
to play in do not achieve the same sort of dynamic. For
example, Professor Layton and the Curious Village [24] is
a game where the player must progress through a series of
hand-authored puzzles. If the player is stuck on a particular
puzzle, there are no options other than to ask for hints or
seek the solution from another player. The incorporation of
procedurally generated puzzles would allow the player to
practice different solving strategies in a variety of related
contexts. On the other hand, there are puzzle games such as
Picross [22] which do allow the player to practice and
improve upon their overall puzzle solving strategy simply
through practicing on a large set of hand-authored levels at
increasing difficulty. It is plausible for human-created
content to compensate for the content-generator.

Interaction with a Community of Players
The final dynamic identified in this framework is that of
how PCG impacts the community of players surrounding a
game. Gee describes this community as the “external
semiotic domain” for games, and as an area where players
engage in a great deal of learning and reflection while
talking to each other about game strategies [15]

PCG researchers typically focus on crafting an experience
for individual players, only within the game’s internal
semiotic domain. However, there is evidence that the
incorporation of PCG into a game prompts communication
about the underlying system and its impact on the play
experience within a community of players. For example,
Civilization IV players engage in long discussions about
how different map generation options work, how they
impact strategies, and why they prefer certain options [29].
In a point-and-click adventure game that incorporated
offline content generation to produce a unique set of
puzzles for each player, the designer noticed that players
who typically rush to post a walkthrough for adventure
games worked together to figure out how the underlying
content generator was working [12].

Understanding the community that surrounds games that
use PCG is an area ripe for future research, both from a
PCG AI point of view (how do we create generators that
target a community of players?) and an HCI/game design
point of view (how do communities of players

communicate about PCG?). There is also an opportunity to
study how PCG impacts player learning in games [49].

Aesthetics
The design choices made for the PCG system, in concert
with the mechanics of the game, lead to unique dynamics.
These dynamics then act in support of several different
aesthetic experiences. The three aesthetics mentioned below
are among the eight “kinds of fun” identified by Hunicke et
al. in the original MDA framework paper [19].

Discovery
PCG acts in support of discovery by providing new
environments for the player to explore or new procedural
systems for the player to learn about over time. This
aesthetic is supported by the dynamics of Searching a Vast
World and Building Generator Strategies. In the first case,
discovery comes simply through exploring a large,
unknown environment. In the second case, discovery is also
cast as a form of exploration for the game’s generative
space.

Challenge
PCG acts in support of challenge through the dynamics of
Memorization vs. Reaction, Building Generator Strategies,
and Practicing in Different Environments. Again, each of
these dynamics leads to a different form of challenge.
Games that use PCG to force the player to react quickly are
providing a form of twitch challenge, where the player must
make moment-to-moment decisions based on a world
unfolding in front of them. Whereas games that use PCG to
force the player to react, but not necessarily in a time-
sensitive way, offer challenge in that the exact content
being experienced has not been seen before by the player.
Similarly, Practicing in Different Environments allows the
player to experience new challenges (though, the same kind
of challenges) through playing the same game in several
different environments.

We can also consider dynamic difficulty adjustment as
related to the Memorization vs. Reaction dynamic, in which
the player is not consciously making a decision about how
to guide the generator, but nonetheless is influencing how
the generator will mete out challenges over the course of
the game, thus altering the player’s path and making it
impossible for them to memorize what will come next.

When Building Generator Strategies, the game has added
challenge through the layer of strategic play that comes in
learning how the generator works, what it can create, and
how to use that knowledge to the player’s advantage.

Fellowship
PCG acts in support of fellowship through creating an
emergent system that encourages player communication
outside of the game environment, via the Interaction with a
Community of Players dynamic. Not only does PCG seem
to encourage player discussion, but it also shapes the ways
that players talk about the game, including discussing

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

923

general strategies for different kinds of content
configurations.

WORKED EXAMPLE
This section provides a worked example, illustrating how
the framework can be used as a language for describing the
combination of PCG system and game.

Endless Web
Endless Web has been used as a motivating example for
several of the framework options thus far. It is a PCG-based
game [50], designed intentionally so that its mechanics,
dynamics, and aesthetics are heavily interdependent with
the PCG system, and where the PCG system and game were
iteratively co-designed. Endless Web uses a generator called
Launchpad. It is a 2D platforming game that uses entirely
procedurally generated content; players are tasked with
exploring Launchpad’s generative space while
simultaneously exploring physical pace.

Mechanics
The Launchpad generator is a grammar-based generator. It
provides parameterized control over both compositional
and experiential aspects of content. The generator uses a
component representation—it knows about individual level
components and some constraints on how they fit together
(e.g. enemies walk on top of platforms), but does not know
about larger-scale common patterns of geometry. The
generator’s experiential control comes in the form of being
able to manipulate level pacing parameters, by specifying a
length of time and frequency/pattern of actions that the
player takes during that time. Launchpad is used to perform
online level generation; new level segments are generated
whenever the player makes a choice that influences the
generator, and in front of the player while she is running
through the world. Endless Web can theoretically produce
an infinite world for the player to explore.

Dynamics
As a platformer, the generated levels make up a core aspect
of the way players interact in the game. There are two main
dynamics that emerge from this combination of mechanics:
Searching a Vast Space, and Building Generator Strategies.
By being given control over the generator’s content
composition, the player is exploring both a physically
infinite space and a very large (though not infinite)
generative space. She is tasked with searching for specific
goals that are hidden at different configurations of this
generative space, so she must manipulate the generator to
find these goal points over the course of the game. This
goal-oriented play also contributes to the dynamic of
Building Generator Strategies. The player will have to
experiment with different configurations of generation
parameters that are at an acceptable difficulty level, and can
choose to push the generator in different directions to find
power-ups that can help through more difficult generated
content. Thus, the player is expected to form strategies
around which goal to search for next, and which directions

to push the generator to both maintain an appropriate
difficulty level and move towards the next goal point.

Aesthetics
These two dynamics lead to two aesthetics for the game.
The primary aesthetic is discovery, brought about by the
fact that the game actively encourages the player to search a
generative space as well as physical space. The game is
about the wonder and confusion of exploring a constantly
changing space, which the PCG contributes to heavily. A
secondary aesthetic is challenge, which emerges from the
strategies that the player needs to form and, to a lesser
extent, from the platforming challenges themselves.

CONCLUSIONS
This paper has presented a framework for analyzing and
discussing the role of PCG in game design and PCG-based
design tools. The framework has been illustrated with
numerous examples from both industry games and
academic research projects, and has helped uncover
nuances in the motivations for using PCG in game design,
and how the style of control a user has over the PCG system
influences their experience.

One of the goals of this research was to unpack the concept
of “replayability” and critically examine how PCG is used
to impact play experience. The framework has uncovered
three primary dynamics that lead to different kinds of
replayability: 1) reacting in a surprising environment, 2)
building generator strategies, and 3) practicing in different
environments. The first of these dynamics leads to
replayability in that the entire purpose of the game is to
play different content on each attempt, typically in order to
beat a high score or progress further than in prior attempts.
The third leads to replayability by providing content that
supports replay of more traditional mechanics as a way to
practice in different scenarios. Both the first and third
dynamics could be plausibly attained through the use of
large amounts of human-authored content. While the
second dynamic does lead to replayability (through
experiencing different content on each play through and
having the opportunity to build strategies around the
generator), it is also a kind of game dynamic that is unique
to what PCG can offer.

It is important to note that there are some aspects of how
the player controls the content generator that are not
prioritized in the framework. In particular, no difference is
explicitly drawn between intentional and unintentional
control over how the generator is being controlled, it simply
provides a language for the style of control from the
generator’s point of view. Whether or not the player is
explicitly provided with control over generated content is a
matter for how the game is designed, and irrelevant to the
generator. The distinction was not made more explicit
because it does not drastically impact game dynamics and
overall play experience; in cases such as Galactic Arms
Race [16], where the player is (supposedly) unintentionally
influencing the next generation of weapons, the dynamic of

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

924

building generator strategies is still present as the player
still takes actions that rely upon the PCG’s existence and
ability to be directed by the player. One might think that
intentional control might be required for a PCG-enabled
game design tool, and certainly some aspects of control
must be intentional—however, one of the goals of using
PCG in design tools is to help the designer brainstorm
different design variants, where lack of intention in control
and resulting surprise over produced content is a benefit.

The presented framework finds broader relevance in the
area of AI-enabled creativity and design support tools
outside of the domain of games. For example, the
Picbreeder [43] tool for cooperating with a computer to
create 2D evolutionary art can be described using the same
set of “mechanics” aspects: patterns emerge from the
underlying subcomponent representation that is not
expected to be recognizable to the creator (our “player”), is
performed online in that creators are building upon each
others’ work, uses a preference-based interaction type, and
allows users to exert compositional control over its output.
In future work, I intend to perform a broader survey of
existing computationally creative tools to see how well the
framework extends, as well as use the framework as a basis
for exploring new potential tools, games, and research
projects that use unique—or even undiscovered—forms of
mechanical control to create new kinds of user experiences.

REFERENCES
1. [adult swim games]. Robot Unicorn Attack (PC

Game). 2010.
2. Bjork, S. and Holopainen, J. Patterns in Game Design

(Game Development Series). Charles River Media,
2004.

3. Bjork, S. Procedurally Generated Game Worlds. Game
Design Patterns 2.0.
http://gdp2.tii.se/index.php/Procedurally_Generated_G
ame_Worlds.

4. Butler, E., Smith, A.M., Liu, Y.-E., and Popovic, Z. A
Mixed-Initiative Tool for Designing Level
Progressions in Games. .

5. Church, D. Formal Abstract Design Tools. Gamasutra
[Online], 1999.
http://www.gamasutra.com/view/feature/3357/formal_
abstract_design_tools.php.

6. Cook, D. The Chemistry Of Game Design. Gamasutra,
2007.
http://www.gamasutra.com/view/feature/129948/the_c
hemistry_of_game_design.php.

7. Cutumisu, M., Onuczko, C., McNaughton, M., et al.
ScriptEase: A generative/adaptive programming
paradigm for game scripting. Science of Computer
Programming 67, 1 (2007), 32–58.

8. Dormans, J. Adventures in Level Design: Generating
Missions and Spaces for Action Adventure Games.
Proceedings of the 2010 Workshop on Procedural
Content Generation in Games (co-located with FDG
2010), (2010).

9. Dormans, J. Engineering Emergence: Applied Theory
for Game Design. 2012.

10. Doull, A. The Death of the Level Designer: Procedural
Content Generation in Games. ASCII Dreams: A
Roguelike Developer’s Diary, 2008.
http://roguelikedeveloper.blogspot.com/2008/01/death-
of-level-designer-procedural.html.

11. Ebert, D.S. Texturing & Modeling: A Procedural
Approach. Morgan Kaufmann, 2003.

12. Fernández-Vara, C. Personal communication, creator
of Symon game. (2012).

13. Firaxis Games. Civilization IV (PC Game). 2K Games,
2005.

14. Gearbox Software and Feral Interactive. Borderlands
(XBox 360). 2K Games, 2009.

15. Gee, J.P. What video games have to teach us about
learning and literacy. Palgrave Macmillan, New York,
NY, 2003.

16. Hastings, E.J., Guha, R.K., and Stanley, K.O.
Automatic Content Generation in the Galactic Arms
Race Video Game. IEEE Transactions on
Computational Intelligence and AI in Games 1, 4
(2009), 245–263.

17. Hendrikx, M., Meijer, S., Van der Velden, J., and
Iosup, A. Procedural Content Generation for Games: A
Survey. ACM Transactions on Multimedia Computing,
Communications and Applications, (2011).

18. Hullett, K. and Whitehead, J. Design Patterns in FPS
Levels. Proceedings of the 2010 International
Conference on the Foundations of Digital Games
(FDG 2010), (2010).

19. Hunicke, R., LeBlanc, M., and Zubek, R. MDA: A
Formal Approach to Game Design and Game
Research. Proceedings of the 2004 AAAI Workshop on
Challenges in Game Artificial Intelligence, AAAI
Press (2004).

20. Interactive Data Visualization Inc. SpeedTree (PC
Software). Lexington, SC, 2010.

21. Jennings-Teats, M., Smith, G., and Wardrip-Fruin, N.
Polymorph: A Model for Dynamic Level Generation.
(2010).

22. Jupiter. Picross DS (Nintendo DS). Nintendo, 2007.
23. Khaled, R., Nelson, M.J., and Barr, P. Design

metaphors for procedural content generation in games.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, (2013), 1509–1518.

24. Level-5. Professor Layton and the Curious Village
(Nintendo DS). Nintendo, 2008.

25. Liapis, A., Yannakakis, G.N., and Togelius, J. Sentient
sketchbook: Computer-aided game level authoring.
Proceedings of ACM Conference on Foundations of
Digital Games, (2013).

26. Maxis. Spore Creature Creator (PC Game). Electronic
Arts, 2008.

27. Maxis. Spore (PC Game). Electronic Arts, 2008.
28. McNaughton, M., Cutumisu, M., Szafron, D.,

Schaeffer, J., Redford, J., and Parker, D. ScriptEase:

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

925

Generative design patterns for computer role-playing
games. Automated Software Engineering, 2004.
Proceedings. 19th International Conference on,
(2004), 88–99.

29. Mortac. The Complete Guide to Map Generation. Civ
Fanatics Forums, 2007.
http://forums.civfanatics.com/showthread.php?t=24678
8&s=b667c50191bb40c93402f38a7560b7ac.

30. Müller, P., Wonka, P., Haegler, S., Ulmer, A., and Van
Gool, L. Procedural Modeling of Buildings. ACM
Transactions on Graphics 25, 3 (2006), 614–623.

31. Nintendo EAD. Animal Crossing: New Leaf (Nintendo
3DS). Nintendo, 2013.

32. Nitsche, M., Ashmore, C., Hankinson, W., Fitzpatrick,
R., Kelly, J., and Margenau, K. Designing Procedural
Game Spaces: A Case Study. Proceedings of
FuturePlay 2006, (2006).

33. Ohkubo, H. Warning Forever (PC Game). Hikware,
2003.

34. Persson, M. Infinite Mario Bros! (PC Game).
http://www.mojang.com/notch/mario/, 2008.

35. Persson, M. Minecraft (PC Game). 2011.
36. Rareware. Donkey Kong Country 2: Diddy’s Kong

Quest (Nintendo DS). Nintendo, 1995.
37. Regier, J. and Gresko, R. Random Asset Generation in

Diablo 3. Invited Talk, UC Santa Cruz, (2009).
38. Risi, S., Lehman, J., D’Ambrosio, D.B., Hall, R., and

Stanley, K.O. Combining Search-Based Procedural
Content Generation and Social Gaming in the Petalz
Video Game. Proceedings of the 2012 Conference on
Artificial Intelligence and Interactive Digital
Entertainment, (2012).

39. Rogue Basin. Articles on Implementation Techniques.
http://roguebasin.roguelikedevelopment.org/index.php
?title=Articles#Implementation.

40. Rohrer, J. Inside a Star-Filled Sky (PC Game). 2011.
41. Saltsman, A. Canabalt (PC Game). Adam Atomic,

2009.
42. Schell, J. The Art of Game Design: A book of lenses.

Morgan Kaufmann, 2008.
43. Secretan, J., Beato, N., D’Ambrosio, D.B., et al.

Picbreeder: a case study in collaborative evolutionary
exploration of design space. Evolutionary Computation
19, 3 (2011), 373–403.

44. Shaker, N., Nicolau, M., Yannakakis, G., Togelius, J.,
and O’Neill, M. Evolving Levels for Super Mario Bros
Using Grammatical Evolution. IEEE Transactions on
Computational Intelligence and Games (CIG), (2012).

45. Shaker, N., Yannakakis, G.N., and Togelius, J.
Towards Automatic Personalized Content Generation
for Platform Games. Proceedings of the Sixth Artificial
Intelligence in Interactive Digital Entertainment
Conference (AIIDE10), (2010).

46. Smelik, R., Galka, K., de Kraker, K.J., Kuijper, F., and
Bidarra, R. Semantic constraints for procedural
generation of virtual worlds. Proceedings of the 2nd

International Workshop on Procedural Content
Generation in Games, ACM (2011).

47. Smelik, R.M., Tutenel, T., de Kraker, K.J., and
Bidarra, R. Integrating Procedural Generation and
Manual Editing of Virtual Worlds. Proceedings of the
2010 Workshop on Procedural Content Generation in
Games (co-located with FDG 2010), (2010).

48. Smith, A.M., Andersen, E., Mateas, M., and Popovic,
Z. A Case Study of Expressively Constrainable Level
Design Automation Tools for a Puzzle Game.
Proceedings of the 2012 Conference on the
Foundations of Digital Games, (2012).

49. Smith, G. and Harteveld, C. Procedural Content
Generation as an Opportunity to Foster Collaborative
Mindful Learning. Workshop on Games and Learning,
co-located with Foundations of Digital Games 2013,
(2013).

50. Smith, G., Othenin-Girard, A., Whitehead, J., and
Wardrip-Fruin, N. PCG-based Game Design: Creating
Endless Web. Proceedings of the International
Conference on the Foundations of Digital Games,
ACM (2012), 188–195.

51. Smith, G., Whitehead, J., Mateas, M., Treanor, M.,
March, J., and Cha, M. Launchpad: A Rhythm-Based
Level Generator for 2D Platformers. IEEE
Transactions on Computational Intelligence and AI in
Games (TCIAIG) 3, 1 (2011).

52. Smith, G., Whitehead, J., and Mateas, M. Tanagra:
Reactive Planning and Constraint Solving for Mixed-
Initiative Level Design. IEEE Transactions on
Computational Intelligence and AI in Games
(TCIAIG), Special Issue on Procedural Content
Generation 3, 3 (2011).

53. Sonic Team. Sonic the Hedgehog (Genesis). SEGA,
1991.

54. Sullivan, A. Content Selection vs. Content Generation.
Expressive Intelligence Studio, 2010. http://eis-
blog.ucsc.edu/2010/06/content-selection-vs-content-
generation/.

55. Togelius, J., Kastbjerg, E., Schedl, D., and
Yannakakis, G.N. What is procedural content
generation?: Mario on the borderline. Proceedings of
the 2nd International Workshop on Procedural
Content Generation in Games, (2011), 3.

56. Togelius, J., Yannakakis, G.N., Stanley, K.O., and
Browne, C. Search-Based Procedural Content
Generation: A Taxonomy and Survey. Computational
Intelligence and AI in Games, IEEE Transactions on 3,
3 (2011), 172 –186.

57. Toy, M., Wichman, G., Arnold, K., and Lane, J. Rogue
(PC Game). 1980.

58. Yannakakis, G.N. and Togelius, J. Experience-Driven
Procedural Content Generation. IEEE Transactions on
Affective Computing 2, 3 (2011), 147–161.

59. Yu, D. Spelunky (PC Game). 2009.

Session: Understanding and Designing Games CHI 2014, One of a CHInd, Toronto, ON, Canada

926

